Discovery Innovation Solutions

Human Factors of IVHM on Next-Generation Vehicles

Robert S. McCann, Ph. D. NASA Ames Research Center

Lily Spirkovska, Ph. D. NASA Ames Research Center

- Current Space Transportation (Shuttle) System will be used to finish ISS responsibilities, and retired in 2010
- •New Exploration Transportation System
- Crew Exploration Vehicle (CEV)

- LEO Missions by 2011
- Lunar Missions by 2018

What's the operating concept for these vehicles?

• CEV

- CEV
- LSAM

How should CEV be Operated?

- "... In our planning, we wanted to ensure that we were designing systems with the maximum possible applicability to future missions to Mars"
 - NASA Administrator Mike Griffin Aug 31 2005

Exploration Missions: Crew-Centered Operations Concept

Where are we today?

• On board Fault Management on Shuttle

- What do we need:
 - Enhanced Fault Management Automation

- How do we get there?
 - Mixed-initiative concept for onboard CEV fault management

- Spacecraft contain very complex propulsion, life support, guidance, communications, and electrical and mechanical power systems
- Each one is highly interconnected, and must operate to very precise standards under harsh environmental conditions
- Managing the health of spacecraft systems is a major component of real-time vehicle operations
 - Entails dramatic real-time information acquisition and information processing requirements
 - Functional status of these systems must
 be monitored at all times
 - If an operational problem is encountered, it must be:
 - detected
 - diagnosed
 - dealt with

- How are these operational requirements met in today's cockpit?
- Each system is instrumented with scores of sensors that continuously measure critical operating parameters: temp, pressures, flow rates, etc.

"Current MEDS" Cockpit BFS GNC SYS SUM 1 Display

- Each sensor produces a continuous stream of data
- Subset available on Cockpit System Summary Displays
- Caution and Warning (C&W) System performs limit sensing on selected parameters (data streams)

Main Engine Malfunction Scenario: Left Engine Helium Supply System

Left Engine Leg A
 Isolation Valve Failed
 Closed

• Introduce Helium Leak

Fault Management Example: Left Engine Non-Isolatable Helium Leak

Cockpit Indications:

MA Light

Auditory Tone(s)

"Up" Arrow

Flashing Fault Message

MPS	L		R	
HE TK P	3640	3680	3670	The same of the sa
REG P A	748	756	750	
В	744	760	756	
dP/dT	20	10	10	
ULL P LHZ	33.8	33.9	33.6	
FOS	21.1	21.0	21.1	
GH2 OUT P	3460	3480	2980	
GO2 OUT T	390	380	400	
MPS He P	5 1:50)		

MPS He P (Pre MECO)

```
1. \dP/dT

If after MECO-60:
2. Shut dn MN ENG per MPS CMD/HYD/ELEC >>

If He REG P^or\:
3. Aff He ISOL - CL

Otherwise:
4. Aff He ISOL A - CL

If no decr in dP/dT:
5. Aff He ISOL A - OP

B - CL

If no decr in dP/dT:
6. Aff He ISOL B - OP
```

If any ENG failed:
7. Failed ENG He I'CNCT - OUT OP
If nonisolatable:
8. Shut dn MN ENG per MPS CMD/HYD/ELEC
If/when TK P < 1150 or REG P < 679 :

Aff He I'CNCT - IN OP

FDF

Fault Management Stages

Time

Minutes

Real-time Spacecraft Operations:

Current operation:

- Unwieldy (too long, too demanding)
- Unsafe (diverts crews attention from other critical other
- information processing requirements)
- Unacceptable for Next-Gen vehicle

Solution:

- Automate constituent functions
- Build concept for human-automation
- collaboration

Capitalize on last 25 years of advances in:

- Computer processing speed
- Memory capacity
- Distributed & parallel processing architectures
- Flight and Health Management
 Software (IVHM) Systems

• State of the art automated health management system (Keller, Wiegand, Swearingen, Reisig, Black, Gillis, & Vandernoot, 2001)

Should we automate completely?

- 3 Compelling reasons why not:
- 1. Limits to automated capabilities:
 - Fault diagnosis:
 - Reasoners don't yet have full fault coverage
 - Software/Hardware subject to failure
 - Humans have to act as backup
 - OOTLUF problem with full automation

- 2) Humans are SME's too
 - Taking them out of the loop amounts to wasting onboard expertise
- 3) Humans and Machines have different processing strengths and weaknesses
 - Frequency complement each other
- By actively partnering, they can
 - Augment each other's capabilities
 - Back each other up in case of failure

- 2) Humans are SME's too
 - Taking them out of the loop amounts to wasting onboard expertise
- 3) Humans and Machines have different processing strengths and weaknesses
 - Frequency complement each other
- By actively partnering, they can
 - Augment each other's capabilities
 - Back each other up in case of failure

- A concept for human-machine partnering
- Following McCann and McCandless (2003)

Making it work: Design Requirements

Main Engine Malfunction Scenario: Left Engine Helium Supply System

Left Engine Leg A
 Isolation Valve Failed
 Closed

• Introduce Helium Leak

1) New interfaces to give direct insight into current functional mode

• Electronic Flight Data File

```
MPS He P (Pre MECO)
    \sqrt{dP/dT}
If after MECO-60:
       Shut dn MN ENG_per MPS CMD/HYD/ELEC >>
If He REG P↑or↓:
       Aff He ISOL - CL
Otherwise:
   4. Aff He ISOL A - CL
   If no decr in dP/dT:
           Aff He ISOL A - OP
                        B - CL
       If no decr in dP/dT:
              Aff He ISOL B - OP
If any ENG failed:
   7. Failed ENG He I'CNCT - OUT OP
If nonisolatable:
      Shut dn MN ENG per MPS CMD/HYD/ELEC
                                               FDF
   If/when TK P < 1150 or REG P < 679 :
           Aff He I'CNCT - IN OP
```


• Candidate Fault Management Display

Natural Language Interfaces

